

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

03509976

PHYSICAL SCIENCE

0652/02

Paper 2 (Core)

October/November 2008

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 14 printed pages and 2 blank pages.

1 A student investigates the current-voltage characteristic for a lamp. She builds the circuit shown in Fig. 1.1.

For Examiner's Use

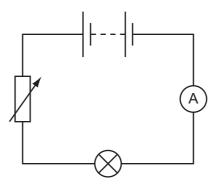


Fig. 1.1

(a) Show where the voltmeter should be connected on Fig. 1.1

[2]

(b) From her results the graph in Fig. 1.2 is plotted.

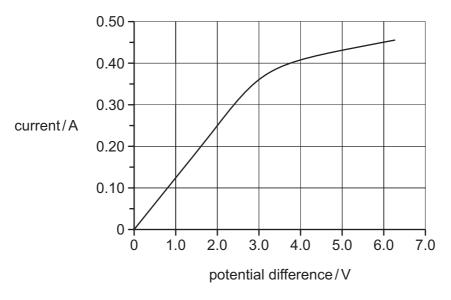


Fig. 1.2

(i) What is the current when there is a potential difference of 2.0 V across the bulb?

Г1	1	
11	1	
	-	

((ii)	Calculate the resistance of the lamp when the potential difference is 2.0 V.							
		Show your working.							
				resistance =	[3]				
(iii)	Use the graph to deduis increased above 0.3	uce what happens to the 30 A.	resistance of the lamp as t	the current				
		Suggest a reason for	the change.						
					[2]				
(a)	Cor	molete Table 2 1 by wr							
(a)	Cor	mplete Table 2.1 by wri		lae and types of bonding.					
(a)	Cor	mplete Table 2.1 by wri	iting in the missing formul						
(a)	Cor		iting in the missing formul	lae and types of bonding.					
(a)	Cor	compound	iting in the missing formul Table 2.1 formula	lae and types of bonding.					
(a)		compound sodium chloride	iting in the missing formul Table 2.1 formula	lae and types of bonding.					
(a)		compound sodium chloride methane	iting in the missing formul Table 2.1 formula	lae and types of bonding.	[4]				
		compound sodium chloride methane potassium bromide	iting in the missing formul Table 2.1 formula NaC1	type of bonding ionic					
	Giv	compound sodium chloride methane potassium bromide	iting in the missing formul Table 2.1 formula	type of bonding ionic					

2

3 Fig. 3.1 shows a 0.20 kg mass hanging on a spring. Fig. 3.1 (a) (i) Calculate the weight of the mass. (g = 10 N/kg)Show your working. weight = (ii) Write down the force acting on the mass due to the spring. force = [3] **(b)** The mass is pulled down a short distance and released.

For Examiner's Use

© UCLES 2008 0652/02/O/N/08

(i) Draw an arrow on Fig. 3.1 and label it F, to show the direction of the resultant force

(ii) State what would happen to the mass immediately after it is released.

on the mass immediately after it is released.

4

	mine can be extracted f sodium bromide in sea	rom seawater. water is reacted with chlorine to displace the bromine.	
(a)	What is the name giver	n to all of the elements in Group 7 of the Periodic Table?	
			[1]
(b)	How many electrons ar	re in the outer shell of bromine?	
			[1]
(c)	Write a balanced equ NaBr, and chlorine, Cl_2	ation for the displacement reaction between sodium bromi	de,
			[2]
(d)	Explain why iodine can	not be used to displace bromine from sodium bromide.	
			[2]
(e)	Give the name, atomi same period of the Per	c number and relative atomic mass of another element in iodic Table as chlorine.	the
	The Periodic Table is p	rinted on page 16.	
	element		
	atomic number		
	relative atomic mass		[3]

For Examiner's Use **5** Fig. 5.1 shows a liquid-in-glass thermometer.

For Examiner's Use

0	10	20	30	40	50	60	70	80	90	100	110°C
	I	шини	سسلسها	سيلسب		IIIIIIIIIII	سيلسب		шини	шини	

Fig. 5.1

(a)	(i)	Name a suitable liquid to use in the thermometer.	
			[1]
	(ii)	Explain what happens to the liquid when the thermometer is placed in a beaker hot water.	· of
			[2]
	(iii)	Name the main process by which energy is transferred from the hot water to talliquid in the thermometer.	the
			[1]
(b)	The	thermometer is now placed in pure boiling water.	
	(i)	What temperature would the thermometer show?	[1]
	(ii)	Explain what is meant by the term <i>boiling</i> .	
			[2]

6 Table 6.1 gives the names and formulae of some organic compounds

For Examiner's Use

Table 6.1

name of compound	formula
methanol	CH₃OH
ethanol	C ₂ H₅OH
propanol	
butanol	C₄H ₉ OH
pentanol	C₅H₁₁OH

(a)	(1)	Name the type of organic compounds listed in the table.	
			[1]
	(ii)	What is the name given to a series of compounds like these?	
			[1]
(b)		Complete the table by writing in the formula for propanol.	[1]
(c)		Draw the structure of ethanol.	
			[1]
(d)		Give two uses of ethanol.	
	(i)		
	(ii)		[2]

7 (a) Fig. 7.1 shows a ripple tank with three wavefronts approaching an area of shallow water.

For Examiner's Use

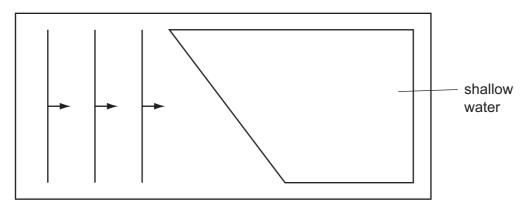


Fig. 7.1

- (i) On Fig 7.1, draw **four** more wavefronts to complete the diagram. [3]
- (ii) Name the process being demonstrated. [1]
- **(b)** Fig. 7.2 shows a similar ripple tank, with waves approaching a barrier that reflects water waves.

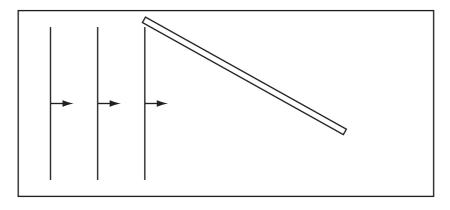


Fig. 7.2

On Fig. 7.2, draw in four more wavefronts to complete the diagram. [3]

8 Small pieces of metallic gold can be found in the gravel at the bottom of streams. Sodium is obtained by the electrolysis of one of its compounds. Iron is extracted by reduction of its ore with carbon in a blast furnace. (a) (i) Put these three metals in order of reactivity. most reactive least reactive [2] (ii) Suggest where you would place carbon in this list? Explain your answer. (b) Name an ore of iron. [1] (c) Stainless steel is a mixture of iron and chromium. (i) What name do we give to mixtures of metals like stainless steel? [1] (ii) Give a use of stainless steel. [1]

For Examiner's Use

10 9 (a) A student arranges two magnets so that magnet **B** balances as in Fig. 9.1. magnet **B** magnet A S Ν Fig. 9.1 (i) Label the poles of magnet B [1] (ii) Explain why magnet B can be balanced in this way. (b) The student brings a magnet near to an iron bar. X S Ν iron bar Fig. 9.2 What happens when: The magnet is brought up to end Y? The magnet is brought up to end X? (c) He wraps a length of wire around the iron bar. He connects the wire to a battery so that there is a current in the wire. He repeats the experiment in **(b)**. Explain how you would expect the results to change

10 Fig. 10.1 shows an experiment to measure the volume of oxygen in 100 cm³ of air.Oxygen reacts with iron to form a solid compound.

For Examiner's Use

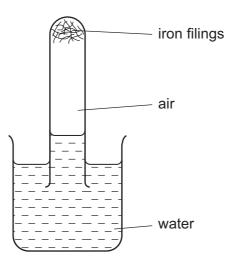


Fig. 10.1

(a)	vvn	at do we call reactions which involve the addition of oxygen?	
			[1]
(b)	Wh	at type of compound is formed when an element reacts with oxygen?	
			[1]
(c)	(i)	What volume of gas remains in the tube when all the oxygen has reacted?	[1]
	(ii)	Name the main gas in the tube after the oxygen has reacted.	
			[1]

11	The	e iod	ine isotope, $^{131}_{53}\mathrm{I}$, decays by emitting a β –particle.	
	(a)	Exp	olain what is meant by a β–particle.	
		•••••		[2]
	(b)	(i)	Complete the equation which describes the decay.	
			$_{53}^{131}I = \dots X + \dots \beta$	
		(ii)	Use the Periodic Table, on page 16, to identify the element X and comment on reactivity.	its
				 [<u>4</u>]

12	A sample of copper chloride is made by reacting excess copper carbonate with hydrochloric acid.						
	Balance the equation for this reaction.						
	CuCO ₃ + HC $l \rightarrow$ CuC l_2 + CO ₂ + H ₂ O [1]						
	b) (i) Name the gas evolved.						
	[1]	ļ					
	(ii) Describe a test for this gas.						
	[2]	ı					
	c) How could you obtain pure copper chloride crystals from the resulting mixture?						
	[2]	ı					

BLANK PAGE

0652/02/O/N/08

BLANK PAGE

0652/02/O/N/08

DATA SHEET
The Periodic Table of the Elements

	0	He Heium	Neon 10 Neon 10 Argon 18	84 Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
Group			19 Fluorine 9 35.5 C 1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		Yb Ytterbium 70	Nobelium 102
	>		16 Oxygen 8 32 S Sulphur	Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101
	^		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	2		12 Carbon 6 Silicon 14 Silicon 14	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Einsteinium
	≡		11 B Boron 5 27 A A 1 Abuminium	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Californium 98
				65 Zn 2inc 30	Cadmium Cad Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96
				S9 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium
				59 Cob Cobalt 27	Rhodium 45	192 Ir Irdium 77		Sm Samarium 62	Pu Plutonium 94
		1 Hydrogen		56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium
				Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		741 Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Cer ium 58	232 Th Thorium 90
				48 Ti Titanium	91 Ziroonium 40	178 Haf Hafnium			nic mass Ibol nic) number
		ı		Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	л х в
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.